A generalized mean field algorithm for variational inference in exponential families

نویسندگان

  • Eric P. Xing
  • Michael I. Jordan
  • Stuart J. Russell
چکیده

We present a class of generalized mean field (GMF) algorithms for approximate inference in exponential family graphical models which is analogous to the generalized belief prop­ agation (GBP) or cluster variational meth­ ods. While those methods are based on over­ lapping clusters, our approach is based on nonoverlapping clusters. Unlike the cluster variational methods, the approach is proved to converge to a globally consistent set of marginals and a lower bound on the likeli­ hood, while providing much of the flexibility associated with cluster variational methods. We present experiments that analyze the ef­ fect of different choices of clustering on infer­ ence quality, and compare GMF with belief propagation on several canonical models.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Variational inference in graphical models: The view from the marginal polytope

Underlying a variety of techniques for approximate inference—among them mean field, sum-product, and cluster variational methods—is a classical variational principle from statistical physics, which involves a “free energy” optimization problem over the set of all distributions. Working within the framework of exponential families, we describe an alternative view, in which the optimization takes...

متن کامل

Graph Partition Strategies for Generalized Mean Field Inference

An autonomous variational inference algorithm for arbitrary graphical models requires the ability to optimize variational approximations over the space of model parameters as well as over the choice of tractable families used for the variational approximation. In this paper, we present a novel combination of graph partitioning algorithms with a generalized mean field (GMF) inference algorithm. ...

متن کامل

Variational Learning : From exponential families to multilinear systems

This note aims to give a general overview of variational inference on graphical models. Starting with the need for the variational approach, we proceed to the derivation of the Variational Bayes EM algorithm that creates distributions on the hidden variables in a graphical model. This leads us to the Variational message Passing algorithm for conjugate exponential families, which is shown to res...

متن کامل

Graphical Models, Exponential Families, and Variational Inference

The formalism of probabilistic graphical models provides a unifying framework for capturing complex dependencies among random variables, and building large-scale multivariate statistical models. Graphical models have become a focus of research in many statistical, computational and mathematical fields, including bioinformatics, communication theory, statistical physics, combinatorial optimizati...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003